Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

mRNA expression characteristics are different in irreversibly atrophic intrinsic muscles of the forepaw compared with reversibly atrophic biceps in a rat model of obstetric brachial plexus palsy (OBPP).

In obstetric brachial plexus palsy (OBPP), irreversible muscle atrophy occurs much faster in intrinsic muscles of the hand than in the biceps. To elucidate the mechanisms involved, mRNA expression profiles of denervated intrinsic muscles of the forepaw (IMF) and denervated biceps were determined by microarray using the rat model of OBPP where atrophy of IMF is irreversible while atrophy of biceps is reversible. Relative to contralateral control, 446 dysregulated mRNAs were detected in denervated IMF and mapped to 51 KEGG pathways, and 830 dysregulated mRNAs were detected in denervated biceps and mapped to 52 KEGG pathways. In denervated IMF, 10 of the pathways were related to muscle regulation; six with down-regulated and one with up-regulated mRNAs. The remaining three pathways had both up- and down-regulated mRNAs. In denervated biceps, 13 of the pathways were related to muscle regulation, six with up-regulated and seven with down-regulated mRNAs. Five of the pathways with up-regulated mRNAs were related to regrowth and differentiation of muscle cells. Among the 23 pathways with dysregulated mRNAs, 13 were involved in regulation of neuromuscular junctions. Our results demonstrated that mRNAs expression characteristics in irreversibly atrophic denervated IMF were different from those in reversibly atrophic denervated biceps; dysregulated mRNAs in IMF were associated with inactive pathways of muscle regulation, and in biceps they were associated with active pathways of regrowth and differentiation. Lack of self-repair potential in IMF may be a major reason why atrophy of IMF becomes irreversible much faster than atrophy of biceps after denervation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app