Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Heme oxygenase-1 contributes to imatinib resistance by promoting autophagy in chronic myeloid leukemia through disrupting the mTOR signaling pathway.

Heme oxygenase-1 (HO-1) has been verified to play an important role in imatinib (IM)-resistant chronic myeloid leukemia (CML) cells, but the mechanism remains unclear. In drug resistant CML cells, HO-1 expression abnormally increased and that of autophagy-related protein LC-3I/II also increased, so we herein postulated HO-1 was associated with autophagy. HO-1 expressions in IM-sensitive/resistant K562/K562R cells were regulated through lentiviral mediation. K562 cells transfected with HO-1 resisted IM and underwent obvious autophagy. After HO-1 expression was silenced in K562R cells, autophagy was inhibited and the sensitivity to IM was increased. The findings were related with the inhibitory effects of high HO-1 expression on the mTOR signaling pathway that negatively regulated autophagy. High HO-1 expression promoted autophagy by inhibiting mTOR. Similar to the cell line results, mononuclear cells of IM-resistant CML patients became significantly sensitive to IM when HO-1 expression was inhibited. In summary, HO-1, which is involved in the development of chemoresistance in leukemia cells by regulating autophagy, may be a novel target for improving leukemia therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app