Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antinociceptive effect of a novel armed spider peptide Tx3-5 in pathological pain models in mice.

The venom of the Brazilian armed spider Phoneutria nigriventer is a rich source of biologically active peptides that have potential as analgesic drugs. In this study, we investigated the analgesic and adverse effects of peptide 3-5 (Tx3-5), purified from P. nigriventer venom, in several mouse models of pain. Tx3-5 was administered by intrathecal injection to mice selected as models of postoperative (plantar incision), neuropathic (partial sciatic nerve ligation) and cancer-related pain (inoculation with melanoma cells) in animals that were either sensitive or tolerant to morphine. Intrathecal administration of Tx3-5 (3-300 fmol/site) in mice could either prevent or reverse postoperative nociception, with a 50 % inhibitory dose (ID50) of 16.6 (3.2-87.2) fmol/site and a maximum inhibition of 87 ± 10 % at a dose of 30 fmol/site. Its effect was prevented by the selective activator of L-type calcium channel Bay-K8644 (10 μg/site). Tx3-5 (30 fmol/site) also produced a partial antinociceptive effect in a neuropathic pain model (inhibition of 67 ± 10 %). Additionally, treatment with Tx3-5 (30 fmol/site) nearly abolished cancer-related nociception with similar efficacy in both morphine-sensitive and morphine-tolerant mice (96 ± 7 and 100 % inhibition, respectively). Notably, Tx3-5 did not produce visible adverse effects at doses that produced antinociception and presented a TD50 of 1125 (893-1418) fmol/site. Finally, Tx3-5 did not alter the normal mechanical or thermal sensitivity of the animals or cause immunogenicity. Our results suggest that Tx3-5 is a strong drug candidate for the treatment of painful conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app