Read by QxMD icon Read

Pflügers Archiv: European Journal of Physiology

Chrysovalantou Mihailidou, Ioulia Chatzistamou, Athanasios G Papavassiliou, Hippokratis Kiaris
Pancreatic dysfunction during diabetes is linked to the induction of endoplasmic reticulum (ER) stress on pancreatic beta (β) cells. Our laboratory recently discovered that p21 protects from diabetes by modifying the outcome of ER stress response. In the present study, we explored the antidiabetic activity of ciclopirox (CPX), an iron chelator and recently described activator of p21 expression. The effects of CPX in beta cell survival and function were assessed in cultured islets in vitro as well as in diabetic mice in vivo...
October 19, 2016: Pflügers Archiv: European Journal of Physiology
Rita I Jabr, Fiona S Hatch, Samantha C Salvage, Alejandro Orlowski, Paul D Lampe, Christopher H Fry
Cardiac arrhythmias are associated with raised intracellular [Ca(2+)] and slowed action potential conduction caused by reduced gap junction (GJ) electrical conductance (Gj). Ventricular GJs are composed of connexin proteins (Cx43), with Gj determined by Cx43 phosphorylation status. Connexin phosphorylation is an interplay between protein kinases and phosphatases but the precise pathways are unknown. We aimed to identify key Ca(2+)-dependent phosphorylation sites on Cx43 that regulate cardiac gap junction conductance and action potential conduction velocity...
October 19, 2016: Pflügers Archiv: European Journal of Physiology
Florentina Sophie Ferstl, Alice Miriam Kitay, Rebecca Marion Trattnig, Abrar Alsaihati, John Peter Geibel
Prolonged exposure to gastric acid is a leading cause of gastroesophageal reflux disease (GERD) and esophagitis. With the ever increasing number of patients showing insensitivity to proton-pump-inhibitor (PPI) therapy with recurrence of symptoms over time, alternative treatment options remain an important issue. Previous studies from our laboratory have shown that a zinc sulfate salt can inhibit HCl generation at the cellular level of the parietal cell. In this paper, we examine the difference between two hydration forms of ZnSO4 (monohydrate H2O and heptahydrate 7H2O) in their entry characteristics into the parietal cell under several physiological conditions associated with acid secretion...
October 19, 2016: Pflügers Archiv: European Journal of Physiology
B Bonito, D R P Sauter, A Schwab, M B A Djamgoz, I Novak
In the recent decades, ion channels became the focus of cancer biologists, as many channels are overexpressed in tumour tissue and functionally they are linked to abnormal cell behaviour with processes including apoptosis, chemo- and radioresistance, proliferation and migration. KCa3.1 is a Ca(2+)-activated K(+) channel that plays a central role in tumour progression in many cancer types. Therefore, the aim of the present study was to investigate KCa3.1 expression in pancreatic cancer cells and assess possible implications to disease progression...
October 17, 2016: Pflügers Archiv: European Journal of Physiology
Carolina Roza, Irene Mazo, Iván Rivera-Arconada, Elsa Cisneros, Ismel Alayón, José A López-García
The superficial dorsal horn contains large numbers of interneurons which process afferent and descending information to generate the spinal nociceptive message. Here, we set out to evaluate whether adjustments in patterns and/or temporal correlation of spontaneous discharges of these neurons are involved in the generation of central sensitization caused by peripheral nerve damage. Multielectrode arrays were used to record from discrete groups of such neurons in slices from control or nerve damaged mice. Whole-cell recordings of individual neurons were also obtained...
October 10, 2016: Pflügers Archiv: European Journal of Physiology
Ming Wei, Yandong Zhou, Aomin Sun, Guolin Ma, Lian He, Lijuan Zhou, Shuce Zhang, Jin Liu, Shenyuan L Zhang, Donald L Gill, Youjun Wang
Store-operated Ca(2+) entry (SOCE) mediated by STIM1 and Orai1 is crucial for Ca(2+) signaling and homeostasis in most cell types. 2-Aminoethoxydiphenyl borate (2-APB) is a well-described SOCE inhibitor, but its mechanisms of action remain largely elusive. Here, we show that 2-APB does not affect the dimeric state of STIM1, but enhances the intramolecular coupling between the coiled-coil 1 (CC1) and STIM-Orai-activating region (SOAR) of STIM1, with subsequent reduction in the formation of STIM1 puncta in the absence of Orai1 overexpression...
October 10, 2016: Pflügers Archiv: European Journal of Physiology
Jeppe Egedal Kirchhoff, Jonas Goldin Diness, Lea Abildgaard, Majid Sheykhzade, Morten Grunnet, Thomas Jespersen
Dose is an important parameter in terms of both efficacy and adverse effects in pharmacological treatment of atrial fibrillation (AF). Both of the class III antiarrhythmics dofetilide and amiodarone have documented anti-AF effects. While dofetilide has dose-related ventricular side effects, amiodarone primarily has adverse non-cardiac effects. Pharmacological inhibition of small conductance Ca(2+)-activated K(+) (SK) channels has recently been reported to be antiarrhythmic in a number of animal AF models. In a Langendorff model of acutely induced AF on guinea pig hearts, it was investigated whether a combination of the SK channel blocker N-(pyridin-2-yl)-4-(pyridin-2-yl)thiazol-2-amine (ICA) together with either dofetilide or amiodarone provided a synergistic effect...
October 8, 2016: Pflügers Archiv: European Journal of Physiology
Yong Chen, Ruping Pan, Alexander Pfeifer
Fat tissue is well known for its capacity to store energy and its detrimental role in obesity and metaflammation. However, humans possess different types of fat that have different functions in physiology and metabolic diseases. Apart from white adipose tissue (WAT), the body's main energy storage, there is also brown adipose tissue (BAT) that dissipates energy as a defense against cold and maintains energy balance for the whole body. BAT is present not only in newborns but also in adult humans and its mass correlates with leanness...
October 4, 2016: Pflügers Archiv: European Journal of Physiology
Joanna Lazniewska, Yuriy Rzhepetskyy, Fang-Xiong Zhang, Gerald W Zamponi, Norbert Weiss
T-type calcium channels are key contributors to neuronal physiology where they shape electrical activity of nerve cells and contribute to the release of neurotransmitters. Enhanced T-type channel expression has been causally linked to a number of pathological conditions including peripheral painful diabetic neuropathy. Recently, it was demonstrated that asparagine-linked glycosylation not only plays an essential role in regulating cell surface expression of Cav3.2 channels, but may also support glucose-dependent potentiation of T-type currents...
September 23, 2016: Pflügers Archiv: European Journal of Physiology
Takaharu Okada, Sonoko Takahashi, Azusa Ishida, Harumichi Ishigame
Multiphoton imaging has been utilized to analyze in vivo immune cell dynamics over the last 15 years. Particularly, it has deepened the understanding of how immune responses are organized by immune cell migration and interactions. In this review, we first describe the following technical advances in recent imaging studies that contributed to the new findings on the regulation of immune responses and inflammation. Improved multicolor imaging of immune cell behavior has revealed that their interactions are spatiotemporally coordinated to achieve efficient and long-term immunity...
September 22, 2016: Pflügers Archiv: European Journal of Physiology
Erick B Ríos-Pérez, Maricela García-Castañeda, Adrián Monsalvo-Villegas, Guillermo Avila
It is widely accepted that aldosterone induces atrial fibrillation (AF) by promoting structural changes, but its effects on the function of primary atrial myocytes remain unknown. We have investigated this point in adult rat atrial myocytes, chronically exposed to the hormone. This treatment produced larger amplitude of Ca(2+) transients, longer action potential (AP) duration, and higher incidence of unsynchronized Ca(2+) oscillations. Moreover, it also gave rise to increases in both cell membrane capacitance (Cm, 30 %) and activity of L-type Ca(2+) channels (LTCCs, 100 %)...
September 15, 2016: Pflügers Archiv: European Journal of Physiology
Yosuke Hashimoto, Kiyohito Yagi, Masuo Kondoh
Given that most malignant tumors are derived from epithelium, developing a strategy for treatment of epithelium-derived cancers (i.e., carcinomas) is a pivotal issue in cancer therapy. Carcinomas, including ovarian, breast, prostate, and pancreatic cancers, are known to overexpress various claudins (CLDNs); in particular, CLDN-3 and -4 are frequently overexpressed in malignant case. The generation of CLDN binders is a key for expanding CLDN-targeted cancer therapy but has been delayed due to the small size of CLDN extracellular domains (approximately 50 amino acids for the first domain and 15 amino acids for the second) and their high homology among species...
September 15, 2016: Pflügers Archiv: European Journal of Physiology
Yusuke Mori, Kohgaku Eguchi, Kiyonori Yoshii, Yoshitaka Ohtubo
Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca(2+) concentration in 2...
September 14, 2016: Pflügers Archiv: European Journal of Physiology
Makoto Osanai, Akira Takasawa, Masaki Murata, Norimasa Sawada
The claudin family, in mammals, encoded by at least 27 members of a single ancestral gene, CLDN, is the main constituent as integral membrane proteins of tight junctions. It has been shown that the expression levels of claudins are often decreased or that their expressions are absent in human neoplasias. These findings are consistent with the well-accepted concept that carcinogenesis is accompanied by the disruption or loss of functional tight junctions. In contrast, accumulating data have showed elevated or aberrant expression of claudins in various cancers, indicating specific roles of claudins in tumorigenesis...
September 13, 2016: Pflügers Archiv: European Journal of Physiology
E Wium, A F Dulhunty, N A Beard
Triadin isoforms, splice variants of one gene, maintain healthy Ca(2+) homeostasis in skeletal muscle by subserving several functions including an influence on Ca(2+) release through the ligand-gated ryanodine receptor (RyR1) ion channels. The predominant triadin isoform in skeletal muscle, Trisk 95, activates RyR1 in vitro via binding to previously unidentified amino acids between residues 200 and 232. Here, we identify three amino acids that influence Trisk 95 binding to RyR1 and ion channel activation, using peptides encompassing residues 200-232...
September 5, 2016: Pflügers Archiv: European Journal of Physiology
Li-Ping Wang, Su-Jing Fan, Shu-Min Li, Xiao-Jun Wang, Jun-Ling Gao, Xiu-Hong Yang
The intermediate-conductance Ca(2+)-activated K(+) (KCa3.1) channel plays a vital role in myocardial fibrosis induced by angiotensin (Ang) II. However, as the antagonists of Ang II, the effect of angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas axis on KCa3.1 channel during myocardial fibrosis remains unknown. This study was designed to explore the function of KCa3.1 channel in the cardioprotective role of ACE2-Ang-(1-7)-Mas. Wild-type (WT) mice, hACE2 transgenic mice (Tg), and ACE2 deficiency mice (ACE2(-/-)) were administrated with Ang II by osmotic mini-pumps...
September 3, 2016: Pflügers Archiv: European Journal of Physiology
E L Peters, C Offringa, D Kos, W J Van der Laarse, R T Jaspers
A major problem in chronic heart failure is the inability of hypertrophied cardiomyocytes to maintain the required power output. A Hill-type oxygen diffusion model predicts that oxygen supply is limiting in hypertrophied cardiomyocytes at maximal rates of oxygen consumption and that this limitation can be reduced by increasing the myoglobin (Mb) concentration. We explored how cardiac hypertrophy, oxidative capacity, and Mb expression in right ventricular cardiomyocytes are regulated at the transcriptional and translational levels in an early stage of experimental pulmonary hypertension, in order to identify targets to improve the oxygen supply/demand ratio...
October 2016: Pflügers Archiv: European Journal of Physiology
Md Shenuarin Bhuiyan, Patrick McLendon, Jeanne James, Hanna Osinska, James Gulick, Bidur Bhandary, John N Lorenz, Jeffrey Robbins
Cardiac myosin-binding protein C (cMyBP-C) is an integral part of the sarcomeric machinery in cardiac muscle that enables normal function. cMyBP-C regulates normal cardiac contraction by functioning as a brake through interactions with the sarcomere's thick, thin, and titin filaments. cMyBP-C's precise effects as it binds to the different filament systems remain obscure, particularly as it impacts on the myosin heavy chain's head domain, contained within the subfragment 2 (S2) region. This portion of the myosin heavy chain also contains the ATPase activity critical for myosin's function...
October 2016: Pflügers Archiv: European Journal of Physiology
Fumiaki Nin, Takamasa Yoshida, Seishiro Sawamura, Genki Ogata, Takeru Ota, Taiga Higuchi, Shingo Murakami, Katsumi Doi, Yoshihisa Kurachi, Hiroshi Hibino
The cochlea of the mammalian inner ear contains an endolymph that exhibits an endocochlear potential (EP) of +80 mV with a [K(+)] of 150 mM. This unusual extracellular solution is maintained by the cochlear lateral wall, a double-layered epithelial-like tissue. Acoustic stimuli allow endolymphatic K(+) to enter sensory hair cells and excite them. The positive EP accelerates this K(+) influx, thereby sensitizing hearing. K(+) exits from hair cells and circulates back to the lateral wall, which unidirectionally transports K(+) to the endolymph...
October 2016: Pflügers Archiv: European Journal of Physiology
Jerzy A Zoladz, Agnieszka Koziel, Andrzej Woyda-Ploszczyca, Jan Celichowski, Wieslawa Jarmuszkiewicz
Endurance training enhances mitochondrial oxidative capacity, but its effect on mitochondria functioning is poorly understood. In the present study, the influence of an 8-week endurance training on the bioenergetic functioning of rat skeletal muscle mitochondria under different assay temperatures (25, 35, and 42 °C) was investigated. The study was performed on 24 adult 4-month-old male Wistar rats, which were randomly assigned to either a treadmill training group (n = 12) or a sedentary control group (n = 12)...
October 2016: Pflügers Archiv: European Journal of Physiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"