Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hmga1 null mouse embryonic fibroblasts display downregulation of spindle assembly checkpoint gene expression associated to nuclear and karyotypic abnormalities.

The High Mobility Group A1 proteins (HMGA1) are nonhistone chromatinic proteins with a critical role in development and cancer. We have recently reported that HMGA1 proteins are able to increase the expression of spindle assembly checkpoint (SAC) genes, thus impairing SAC function and causing chromosomal instability in cancer cells. Moreover, we found a significant correlation between HMGA1 and SAC genes expression in human colon carcinomas. Here, we report that mouse embryonic fibroblasts null for the Hmga1 gene show downregulation of Bub1, Bub1b, Mad2l1 and Ttk SAC genes, and present several features of chromosomal instability, such as nuclear abnormalities, binucleation, micronuclei and karyotypic alterations. Interestingky, also MEFs carrying only one impaired Hmga1 allele present karyotypic alterations. These results indicate that HMGA1 proteins regulate SAC genes expression and, thereby, genomic stability also in embryonic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app