Add like
Add dislike
Add to saved papers

Prevalence of glucose-6-phosphate dehydrogenase deficiency in jaundiced Egyptian neonates.

BACKGROUND: The enzyme, Glucose-6-phosphate dehydrogenase (G6PD), deficiency leads to impaired production of reduced glutathione and predisposes the red cells to be damaged by oxidative metabolites, causing hemolysis. Deficient neonates may manifest clinically as hyperbilirubinemia or even kernicterus.

OBJECTIVE: This study was carried out to detect erythrocyte G6PD deficiency in neonatal hyperbilirubinemia.

METHODS AND DESIGN: To determine the frequency and effect of G6PD deficiency, this study was conducted on 202 neonates with indirect hyperbilirubinemia. All term and preterm babies up to 13 day of age admitted with clinically evident jaundice were taken for the study. G6PD activity is measured by the UV-Kinetic Method using cellular enzyme determination reagents by spectrophotometry according to manufacturer's instructions.

RESULTS: A total of 202 babies were enrolled in this study. Male babies outnumbered the female (71.3% versus 28.7%). Mean age of the study newborns was 3.75 ± 2.5 days. Eighteen neonates (8.9%) had G6PD deficiency, all are males. One case had combined G6PD deficiency and RH incompatibility. Mean serum total bilirubin was 17.2 ± 4.4 in G6PD deficient cases. There was significant positive correlation between the time of appearance of jaundice in days and G6PD levels in G6PD deficient cases.

CONCLUSION: Neonatal hyperbilirubinemia is associated with various clinical comorbidities. G6PD deficiency is found to one important cause of neonatal jaundice developing on day 2 onwards.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app