Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Dexmedetomidine and ketamine show distinct patterns of cell degeneration and apoptosis in the developing rat neonatal brain.

OBJECTIVE: Early exposure to common anesthetic and sedative agents causes widespread brain cell degeneration and apoptosis in the developing rat brain, associated with persistent learning deficits in rats. This study was designed to determine whether the α2 adrenergic receptor agonist, dexmedetomidine, produces brain cell degeneration and apoptosis in postnatal day-7 rats in the same brain areas when compared to ketamine.

METHODS: Systemic saline, ketamine 20 mg/kg, or dexmedetomidine at 30 or 45 μg/kg were given six times to postnatal day 7 rats (n  =  6/group) every 90 min. Twenty-four hours after the initial injection, brain regions were processed and analyzed for cell degeneration using the silver stain and for apoptosis using activated caspase-3 immunohistochemistry.

RESULTS: Exposure to ketamine resulted in significant cellular degeneration and apoptosis in limbic brain regions, but nonsignificant changes in primary sensory brain regions. In contrast, dexmedetomidine produced significant cellular degeneration and apoptosis in primary sensory brain regions, but nonsignificant changes in limbic regions.

CONCLUSIONS: These data show that ketamine and dexmedetomidine result in anatomically distinct patterns of cell degeneration and apoptosis in the brains of 7-day-old rat pups. The meaning and the clinical significance of these findings remain to be established.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app