Add like
Add dislike
Add to saved papers

TAT-HSA-α-MSH fusion protein with extended half-life inhibits tumor necrosis factor-α in brain inflammation of mice.

Neuroinflammation constitutes a principal process involved in the progression of various central nervous system (CNS) disorders, including Parkinson's disease, Alzheimer's disease, ischemic stroke, and traumatic brain injury. The safety and efficacy of potential neuroprotective therapeutic agents is controversial and limited. Alpha-melanocyte-stimulating hormone (α-MSH) as a tridecapeptide derived from pro-opiomelanocortin displays potent anti-inflammatory and protective effects with a wide therapeutic window in brain damage. However, it is difficult to deliver effective concentrations of α-MSH into brain tissue via nondirect application. Besides, the half-life of the tridecapeptide is only a few minutes. In the present study, we generated a novel TAT-HSA-α-MSH by genetically fusing α-MSH with N-terminus 11-amino acid protein transduction domain of the human immunodeficiency virus Tat protein (TAT) and human serum albumin (HSA), which showed favorable pharmacokinetic properties and can effectively cross the blood brain barrier (BBB). The findings showed that TAT-HSA-α-MSH significantly inhibits NF-κB activation in human glioma cells A172 and tumor necrosis factor-α (TNF-α) production in experimental brain inflammation. These results indicate that TAT-HSA-α-MSH may be a potential therapeutic agent for treating neuroinflammation which plays a fundamental role in CNS disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app