Add like
Add dislike
Add to saved papers

Cardiovascular Alterations during the Interictal Period in Awake and Pithed Amygdala-Kindled Rats.

Epileptic seizures are often accompanied by increased sympathetic cardiovascular activity (even interictally), but it remains unknown whether this increased activity is of central and/or peripheral origin. Hence, this study investigated the cardiovascular alterations produced by amygdala kindling in awake and pithed Wistar rats. Blood pressure (BP) and heart rate (HR) were initially recorded by tail cuff plethysmography in awake control, sham-operated and amygdala-kindled rats before and 24 hr after the kindling process. The after-discharge threshold (ADT) was measured under different conditions to correlate brain excitability with BP and HR in kindled rats. Twenty-four hours after the last kindling seizure, (i) HR, systolic and diastolic BP were increased and (ii) only higher HR values correlated with lower ADT values. Forty-eight hr after the last kindled seizure, all rats were pithed and prepared for analysing the tachycardic, vasopressor and vasodepressor responses by (i) stimulation of the sympathetic or sensory vasodepressor CGRPergic out-flows (stimulus-response curves, S-R curves) and (ii) intravenous injections of noradrenaline or α-CGRP (dose-response curves, D-R curves). Interestingly, (i) the tachycardic S-R and D-R curves were attenuated, whilst the CGRPergic S-R and D-R curves were potentiated in kindled rats, and (ii) the vasopressor noradrenergic S-R and D-R curves were not significantly different in all groups. Therefore, the kindling process may be associated with overstimulation in the central sympathetic and sensory out-flows interictally, producing (i) peripheral attenuation of cardiac sympathetic out-flow and β-adrenoceptor activity and (ii) peripheral potentiation of vasodepressor sensory CGRPergic out-flow and CGRP receptor activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app