Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Wnt5a Deficiency Leads to Anomalies in Ureteric Tree Development, Tubular Epithelial Cell Organization and Basement Membrane Integrity Pointing to a Role in Kidney Collecting Duct Patterning.

The Wnts can be considered as candidates for the Congenital Anomaly of Kidney and Urinary Tract, CAKUT diseases since they take part in the control of kidney organogenesis. Of them Wnt5a is expressed in ureteric bud (UB) and its deficiency leads to duplex collecting system (13/90) uni- or bilateral kidney agenesis (10/90), hypoplasia with altered pattern of ureteric tree organization (42/90) and lobularization defects with partly fused ureter trunks (25/90) unlike in controls. The UB had also notably less tips due to Wnt5a deficiency being at E15.5 306 and at E16.5 765 corresponding to 428 and 1022 in control (p<0.02; p<0.03) respectively. These changes due to Wnt5a knock out associated with anomalies in the ultrastructure of the UB daughter epithelial cells. The basement membrane (BM) was malformed so that the BM thickness increased from 46.3 nm to 71.2 nm (p<0.01) at E16.5 in the Wnt5a knock out when compared to control. Expression of a panel of BM components such as laminin and of type IV collagen was also reduced due to the Wnt5a knock out. The P4ha1 gene that encodes a catalytic subunit of collagen prolyl 4-hydroxylase I (C-P4H-I) in collagen synthesis expression and the overall C-P4H enzyme activity were elevated by around 26% due to impairment in Wnt5a function from control. The compound Wnt5a+/-;P4ha1+/- embryos demonstrated Wnt5a-/- related defects, for example local hyperplasia in the UB tree. A R260H WNT5A variant was identified from renal human disease cohort. Functional studies of the consequence of the corresponding mouse variant in comparison to normal ligand reduced Wnt5a-signalling in vitro. Together Wnt5a has a novel function in kidney organogenesis by contributing to patterning of UB derived collecting duct development contributing putatively to congenital disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app