Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Gene Map of the HLA Region, Graves' Disease and Hashimoto Thyroiditis, and Hematopoietic Stem Cell Transplantation.

The human leukocyte antigen (HLA) genomic region spanning about 4 Mb is the most gene dense and the polymorphic stretches in the human genome. A total of the 269 loci were identified, including 145 protein coding genes mostly important for immunity and 50 noncoding RNAs (ncRNAs). Biological function of these ncRNAs remains unknown, becoming hot spot in the studies of HLA-associated diseases. The genomic diversity analysis in the HLA region facilitated by next-generation sequencing will pave the way to molecular understanding of linkage disequilibrium structure, population diversity, histocompatibility in transplantation, and associations with autoimmune diseases. The 4-digit DNA genotyping of HLA for six HLA loci, HLA-A through DP, in the patients with Graves' disease (GD) and Hashimoto thyroiditis (HT) identified six susceptible and three resistant HLA alleles. Their epistatic interactions in controlling the development of these diseases are shown. Four susceptible and one resistant HLA alleles are shared by GD and HT. Two HLA alleles associated with GD or HT control the titers of autoantibodies to thyroid antigens. All these observations led us to propose a new model for the development of GD and HT. Hematopoietic stem cell transplantation from unrelated donor (UR-HSCT) provides a natural experiment to elucidate the role of allogenic HLA molecules in immune response. Large cohort studies using HLA allele and clinical outcome data have elucidated that (1) HLA locus, allele, and haplotype mismatches between donor and patient, (2) specific amino acid substitution at specific positions of HLA molecules, and (3) ethnic background are all responsible for the immunological events related to UR-HSCT including acute graft-versus-host disease (GVHD), chronic GVHD, graft-versus-leukemia (GvL) effect, and graft failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app