Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential effects of the recombinant toxin PnTx4(5-5) from the spider Phoneutria nigriventer on mammalian and insect sodium channels.

Biochimie 2016 Februrary
The toxin PnTx4(5-5) from the spider Phoneutria nigriventer is extremely toxic/lethal to insects but has no macroscopic behavioral effects observed in mice after intracerebral injection. Nevertheless, it was demonstrated that it inhibits the N-methyl-d-aspartate (NMDA) - subtype of glutamate receptors of cultured rat hippocampal neurons. PnTx4(5-5) has 63% identity to PnTx4(6-1), another insecticidal toxin from P. nigriventer, which can slow down the sodium current inactivation in insect central nervous system, but has no effect on Nav1.2 and Nav1.4 rat sodium channels. Here, we have cloned and heterologous expressed the toxin PnTx4(5-5) in Escherichia coli. The recombinant toxin rPnTx4(5-5) was tested on the sodium channel NavBg from the cockroach Blatella germanica and on mammalian sodium channels Nav1.2-1.6, all expressed in Xenopus leavis oocytes. We showed that the toxin has different affinity and mode of action on insect and mammalian sodium channels. The most remarkable effect was on NavBg, where rPnTx4(5-5) strongly slowed down channel inactivation (EC50 = 212.5 nM), and at 1 μM caused an increase on current peak amplitude of 105.2 ± 3.1%. Interestingly, the toxin also inhibited sodium current on all the mammalian channels tested, with the higher current inhibition on Nav1.3 (38.43 ± 8.04%, IC50 = 1.5 μM). Analysis of activation curves on Nav1.3 and Nav1.5 showed that the toxin shifts channel activation to more depolarized potentials, which can explain the sodium current inhibition. Furthermore, the toxin also slightly slowed down sodium inactivation on Nav1.3 and Nav1.6 channels. As far as we know, this is the first araneomorph toxin described which can shift the sodium channel activation to more depolarized potentials and also slows down channel inactivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app