Add like
Add dislike
Add to saved papers

Real-time imaging of suction blistering in human skin using optical coherence tomography.

Separation of skin epidermis from the dermis by suction blistering has been used with high success rate for autologous skin epidermal grafting in burns, chronic wounds and vitiligo transplantation treatment. Although commercial products that achieve epidermal grafting by suction blistering are presently available, there is still limited knowledge and understanding on the dynamic process of epidermal-dermal separation during suction blistering. In this report we integrated a suction system to an Optical Coherence Tomography (OCT) which allowed for the first time, real-time imaging of the suction blistering process in human skin. We describe in this report the evolution of a suction blister where the growth is modeled with a Boltzmann sigmoid function. We further investigated the relationship between onset and steady-state blister times, blister growth rate, applied suction pressure and applied local skin temperature. Our results show that while the blister time is inversely proportional to the applied suction pressure, the relationship between the blister time and the applied temperature is described by an exponential decay.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app