Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Lipid metabolites of the phospholipase A2 pathway and inflammatory cytokines are associated with brain volume in paediatric cerebral malaria.

BACKGROUND: Cerebral malaria (CM) remains a significant cause of morbidity and mortality in children in sub-Saharan Africa. CM mortality has been associated with increased brain volume, seen on neuroimaging studies.

METHODS: To examine the potential role of blood metabolites and inflammatory mediators in increased brain volume in Malawian children with CM, an association study was performed between plasma metabolites, cytokine levels and phospholipase A2 (PLA2) activity with brain volume.

RESULTS: The metabolomics analysis demonstrated arachidonic acid and other lysophospholipids to be positively associated with brain swelling. These lipids are products of the PLA2 enzyme and an association of plasma PLA2 enzymatic activity with brain swelling was confirmed. TNFα, which can upregulate PLA2 activity, was associated with brain volume. In addition, CCL2 and IL-8 were also associated with brain volume. Some of these cytokines can alter endothelial cell tight junction proteins and increase blood brain barrier permeability.

CONCLUSIONS: Taken together, paediatric CM brain volume was associated with products of the PLA2 pathway and inflammatory cytokines. Their role in causality is unknown. These molecules will need to undergo testing in vitro and in animal models to understand their role in processes of increased brain volume. These observations provide novel data on host physiology associated with paediatric CM brain swelling, and may both inform pathogenesis models and suggest adjunct therapies that could improve the morbidity and mortality associated with paediatric CM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app