Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Acute off-target effects of neural circuit manipulations.

Nature 2015 December 18
Rapid and reversible manipulations of neural activity in behaving animals are transforming our understanding of brain function. An important assumption underlying much of this work is that evoked behavioural changes reflect the function of the manipulated circuits. We show that this assumption is problematic because it disregards indirect effects on the independent functions of downstream circuits. Transient inactivations of motor cortex in rats and nucleus interface (Nif) in songbirds severely degraded task-specific movement patterns and courtship songs, respectively, which are learned skills that recover spontaneously after permanent lesions of the same areas. We resolve this discrepancy in songbirds, showing that Nif silencing acutely affects the function of HVC, a downstream song control nucleus. Paralleling song recovery, the off-target effects resolved within days of Nif lesions, a recovery consistent with homeostatic regulation of neural activity in HVC. These results have implications for interpreting transient circuit manipulations and for understanding recovery after brain lesions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app