Add like
Add dislike
Add to saved papers

Role of nitric oxide in kidney and liver (as distance organ) function in bilateral renal ischemia-reperfusion: Effect of L-Arginine and NG-nitro-L-Arginine methyl ester.

BACKGROUND: Renal ischemia-reperfusion (RIR) is a major cause of renal dysfunction that acts through different mechanisms. We investigated the role of L-Arginine as an endogenous nitric oxide (NO) precursor and NG-nitro-L-Arginine methyl ester (L-NAME) as an NO inhibitor on kidney and liver function in RIR model.

MATERIALS AND METHODS: Fifty-eight Wistar rats were randomly assigned to four groups. Groups 1 (sham-operated, n = 13) received a single dose of saline (4 ml/kg, i.p.) and 2 (Ischemia [Isch], n = 14) received a single dose of saline (4 ml/kg, i.p.). Groups 3 (Isch + L-NAME, n = 15) received a single dose of L-NAME (20 mg/kg, i.p.) and 4 (Isch + L-Arginine n = 16) received a single dose of L-Arginine (300 mg/kg, i.p.), After 2 h, renal failure was induced by clamping both renal pedicles for 45 min, followed by 24-h reperfusion in Groups 2-4. Finally, blood samples were obtained, and kidney tissue samples were subjected for pathology investigations.

RESULTS: The body weight decreased, and the serum levels of blood urea nitrogen (BUN) and creatinine (Cr), and kidney tissue damage score (KTDS) increased significantly in the Isch and Isch + L-NAME groups compared with the sham group while L-Arginine improved weight reduction (P < 0.05), and it reduced the serum levels of BUN and Cr, and KTDS when compared with the Isch and Isch + L-NAME groups. Kidney weight increased significantly in all groups compared with the sham group. L-Arginine reduced the liver tissue level of malondialdehyde and increased alkaline phosphatase.

CONCLUSION: L-Arginine as an NO precursor can improve kidney function against RIR. It also improves oxidative stress in liver tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app