Add like
Add dislike
Add to saved papers

Biosensors and nanobiosensors for therapeutic drug and response monitoring.

Analyst 2016 January 22
Therapeutic drug monitoring (TDM) is required for pharmaceutical drugs with dosage limitations or toxicity issues where patients undergoing treatment with these drugs require frequent monitoring. This allows for the concentration of such pharmaceutical drugs in a patient's biofluid to be closely monitored in order to assess the pharmacokinetics, which could result in an adjustment of dosage or in medical intervention if the situation becomes urgent. Biosensors are a class of analytical techniques competent in the rapid quantification of therapeutic drugs and recent developments in instrumental platforms and in sensing schemes, as well as the emergence of nanobiosensors, have greatly contributed to the principal examples of these sensors for therapeutic drug monitoring. Based on initial success stories, it is clear that (nano)biosensors could pave the way for therapeutic drug monitoring of many commonly administered drugs and for new drugs that will be introduced to the market allowing for safe and optimal dosing across a wide range of pharmaceuticals. In this review, we report on the recent developments in biosensing and nanobiosensing techniques and, focussing mainly on anti-cancer agents and antibiotics, we discuss the different classes of molecules upon which therapeutic drug monitoring has already been successfully applied. The potential contributions of (nano)biosensors are also reviewed for the emerging areas of therapeutic response monitoring, where markers are monitored to ensure compliance of a patient to a treatment and in the area of cellular response to therapeutic drugs in order to identify cytotoxic effects of drugs on cells or to identify patients responding to a drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app