Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Intracellular Target-Specific Accretion of Cell Penetrating Peptides and Bioportides: Ultrastructural and Biological Correlates.

Bioconjugate Chemistry 2016 January 21
Cell penetrating peptide (CPP) technologies provide a viable strategy to regulate the activities of intracellular proteins that may be intractable to other biological agents. In particular, the cationic helical domains of proteins have proven to be a reliable source of proteomimetic bioportides, CPPs that modulate the activities of intracellular proteins. In this study we have employed live cell imaging confocal microscopy to determine the precise intracellular distribution of a chemically diverse set of CPPs and bioportides. Our findings indicate that, following efficient cellular entry, peptides are usually accreted at intracellular sites rather than being freely maintained in an aqueous cytosolic environment. The binding of CPPs to proteins in a relatively stable manner provides a molecular explanation for our findings. By extension, it is probable that many bioportides influence biological processes through a dominant-negative influence upon discrete protein-protein interactions. As an example, we report that bioportides derived from the leucine-rich repeat kinase 2 discretely influence the biology and stability of this key therapeutic target in Parkinson's disease. The intracellular site-specific accretion of CPPs and bioportides can also be readily modulated by the attachment of larger cargoes or, more conveniently, short homing motifs. We conclude that site-specific intracellular targeting could be further exploited to expand the scope of CPP technologies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app