Journal Article
Observational Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Epicardial myocardial strain abnormalities may identify the earliest stages of arrhythmogenic cardiomyopathy.

The aim of this cohort study was to evaluate the value of echocardiographic multilayer strain analysis in the identification of arrhythmogenic cardiomyopathy (AC) in its earliest stages in which sudden cardiac death can occurs. Twenty seven asymptomatic relatives of AC probands (mean age 39.6 ± 19.5 years, 37 % male) with a desmosomal pathogenic mutation but no additional criteria for AC (group II) were compared to age and sex-matched healthy controls (group I). In addition, 70 patients harboring a pathogenic desmosomal mutation with "definitive" diagnosis of AC (group IV), and 19 subjects with "borderline" diagnosis (group III) were also studied. A standard echocardiographic evaluation plus left (LV) and right ventricular global and regional transmural, endocardial, and epicardial longitudinal strain (LS) analysis, was performed. In group II, while LV ejection fraction, fractional shortening, and S' were not significantly reduced compared to controls, transmural global LS was significantly reduced to 19.3 ± 1.8 % in group II versus 20.9 ± 1.1 % in controls (p = 0.0003). Compared to controls, group II presented significant (p < 0.05) regional LS decrease in the basal infero-lateral, antero-lateral, latero-apical, infero-septal, and septo-apical segments. Moreover, LS of the latero-apical and the basal antero-lateral segments was significantly altered in the epicardium (p < 0.05) but not significantly in the endocardium. Global and regional LV LS analysis allows detection of AC in an early or non-diagnostic stage of the disease. Moreover, epicardial LS analysis allows the detection of abnormalities earlier than endocardial LS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app