Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester.

Chronic inflammation in brain plays a critical role in major neurodegenerative diseases such as Alzheimer's, Parkinson's disease, stroke or multiple sclerosis. Microglia, resident macrophages and intristinc components of CNS, appear to be main effectors in this pathological process. Quercetin, a naturally occurring flavonoid, was proven to downregulate inflammatory genes in microglia. Synthetically modified quercetin, 3'-O-(3-chloropivaloyl) quercetin (CPQ), is assumed to possess better biological availability and enhanced antioxidant properties. In the present study, antineuroinflammatory capability of the novel compound CPQ was assessed in BV-2 microglial cells. Our data show that treatment with CPQ attenuated the production of the inflammatory mediators, nitric oxide (NO) and tumour necrosis factor-α (TNF-α), in LPS-stimulated microglia somewhat more efficiently than did quercetin (p > 0.05 for CPQ vs. quercetin-treated group). Also, protein level of inducible NO synthase (iNOS) in LPS-activated BV-2 microglia was to some extent more effectively supressed by CPQ than by unmodified flavonoid. In consistence with the extent of their effects on pro-inflammatory markers, CPQ and quercetin showed down-regulation of NFκB activation. This quercetin analogue caused also a decline in BV-2 microglia proliferation with interfering with cell cycle progression (p < 0.001 for CPQ vs. quercetin-treated group). However, CPQ did not remarkably affect cell viability. In addition, CPQ showed a minor better suppression of PMA-induced generation of superoxide than did quercetin. Neither CPQ nor quercetin influenced phagocytosis of BV-2 cells. These results point to the therapeutic potential of 3'-O-(3-chloropivaloyl)quercetin (CPQ) as a novel antiinflammatory drug in neurodegenerative diseases, mediating favourable modulation of pro-inflammatory functions of microglia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app