Add like
Add dislike
Add to saved papers

Sequence of electrode implantation and outcome of deep brain stimulation for Parkinson's disease.

INTRODUCTION: The effect of the variability of electrode placement on outcomes after bilateral deep brain stimulation of subthalamic nucleus has not been sufficiently studied, especially with respect to the sequence of hemisphere implantation.

METHODOLOGY: We retrospectively analysed the clinical and radiographic data of all the consecutive patients with Parkinson's disease who underwent surgery at our centre and completed at least 1 year follow-up. The dispersion in electrode location was calculated by the square of deviation from population mean, and the direction of deviation was analysed by comparing the intended and final implantation coordinates. Linear regression analysis was performed to analyse the predictors of postoperative improvement of the motor condition, also controlling for the sequence of implanted hemisphere.

RESULTS: 76 patients (mean age 58±7.2 years) were studied. Compared with the first side, the second side electrode tip had significantly higher dispersion as an overall effect (5.6±21.6 vs 2.2±4.9 mm(2), p=0.04), or along the X-axis (4.1±15.6 vs 1.4±2.4 mm(2), p=0.03) and Z-axis (4.9±11.5 vs 2.9±3.6 mm(2), p=0.02); the second side stimulation was also associated with a lower threshold for side effects (contact 0, p<0.001 and contact 3, p=0.004). In the linear regression analysis, the significant predictors of outcome were baseline activities of daily living (p=0.010) and dispersion of electrode on the second side (p=0.005).

CONCLUSIONS: We observed a higher dispersion for the electrode on the second implanted side, which also resulted to be a significant predictor of motor outcome at 1 year.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app