Journal Article
Review
Add like
Add dislike
Add to saved papers

MR assessment of pediatric hydrocephalus: a road map.

PURPOSE: This study was conducted to design a rational approach to the MR diagnosis of hydrocephalus based on a pathophysiologic reevaluation of its possible mechanisms and to apply it to the different etiological contexts.

METHOD: A review of the literature reports describing new physiologic models of production and absorption and of the hydrodynamics of the CSF was made.

RESULTS: Besides the secretion of CSF by the choroid plexuses, and its passive, pressure-dependent transdural absorption (arachnoid villi, dural clefts, cranial, and spinal nerve sheaths), water transporters, aquaporins, allow water (if not ions and organic molecules) to exchange freely between the brain parenchyma and the CSF spaces across the ependymal and the pial interfaces (including the Virchow-Robin spaces). Consequently, the CSF bulk flow is not necessarily global, and situations of balanced absorption-secretion may occur separately in different CSF compartments such as the ventricular, intracranial, or intraspinal CSF spaces. This means that rather than from a hypothetical pressure gradient from the plexuses to the dural sinuses, the dynamics of the CSF depend on the force provided in those different compartments by the arterial systolic pulsation of the pericerebral (mostly), intracerebral, and intraventricular (choroid plexuses) vascular beds.

CONCLUSION: Using MR imaging, diverse varieties of hydrocephalus may tentatively be explained by applying those concepts to the correspondingly diverse causal diseases. Hopefully, this may have an impact on the choice of the treatment strategies also.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app