Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The spatial distribution of fossil fuel CO2 traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China.

Atmospheric fossil fuel CO2 (CO2ff ) information is an important reference for local government to formulate energy-saving and emission reduction in China. The CO2ff spatial distribution in Beijing City was traced by Δ(14)C in the leaves of gingko (Ginkgo biloba L.) from late March to September in 2009. The Δ(14)C values were in the range of -35.2 ± 2.8∼15.5 ± 3.2 ‰ (average 3.4 ± 11.8 ‰), with high values found at suburban sites (average 12.8 ± 3.1 ‰) and low values at road sites (average -8.4 ± 18.1 ‰). The CO2ff concentrations varied from 11.6 ± 3.7 to 32.5 ± 9.0 ppm, with an average of 16.4 ± 4.9 ppm. The CO2ff distribution in Beijing City showed spatial heterogeneity. CO2ff hotspots were found at road sites resulted from the emission from vehicles, while low CO2ff concentrations were found at suburban sites because of the less usage of fossil fuels. Additionally, CO2ff concentrations in the northwest area were generally higher than those in the southeast area due to the disadvantageous topography.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app