Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Histone Demethylase UTX Promotes Brown Adipocyte Thermogenic Program Via Coordinated Regulation of H3K27 Demethylation and Acetylation.

Brown adipocytes function to dissipate energy as heat through adaptive thermogenesis. Understanding the molecular mechanisms underlying the brown fat thermogenic program may provide insights for the development of therapeutic approaches in the treatment of obesity. Most studies investigating the mechanisms underlying brown fat development focus on genetic mechanisms; little is known about the epigenetic mechanisms in this process. We have discovered that ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase for di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), plays a potential role in regulating brown adipocyte thermogenic program. We found that UTX is up-regulated during brown adipocyte differentiation and by cold exposure in both brown adipose tissue (BAT) and white adipose tissue (WAT) of mice, suggesting a potential role in thermogenesis. Inactivation of UTX down-regulates brown fat specific gene expression, while overexpression of UTX does the opposite. Notably, activation of β adrenergic signaling recruits UTX to the UCP1 and PGC1α promoters, leading to decreased H3K27me3, a histone transcriptional repressive mark. UTX demethylates H3K27me3 and subsequently interacts with the histone acetyltransferase (HAT) protein CBP, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulate brown adipocyte thermogenic program through coordinated control of demethylating H3K27me3 and acetylating H3K27, switching the transcriptional repressive state to the transcriptional active state at the promoters of UCP1 and PGC1α. We conclude that UTX may play a potential role in regulation of brown adipocyte gene expression and may mediate β adrenergic activation of brown fat function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app