Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Advanced Lipoxidation end Product Precursor Malondialdehyde Induces IL-17E Expression and Skews Lymphocytes to the th17 Subset.

Malondialdehyde (MDA) is a highly reactive endogenous product of thromboxane synthesis in the prostagland and lipid peroxidation by reactive oxygen species. Elevated MDA levels occur in diabetes and atherosclerotic plaques. The aim of this study was to examine the molecular mechanisms of MDA-induced IL-17E cytokine expression and its effect on T-cell differentiation. Real-time PCR, RT-PCR and ELISA were used to assess the expression of IL-17 family cytokines in Jurkat T-cells and human peripheral blood lymphocytes (PBLCs) from diabetic subjects. Luciferase reporter assays were used for the promoter activation study. Pharmacological inhibitors were used for signaling pathway experiments. FACS analyses were used to measure the Th1, Th2 and Th17 subset levels. MDA induced significant (2- to 3-fold; p < 0.01) generation of IL-17E mRNA in a dose- and time-dependent manner in Jurkat T-cells and PBLCs. Elevated IL-17E mRNA levels were found in the lymphocytes from diabetic subjects. The increased IL-17E protein and mRNA levels correlate well with serum MDA levels from diabetic patients. Transient transfection of plasmid containing the minimum IL-17E promoter region (pIL-17E-Luc) showed a significant (2-fold; p < 0.01) increase in luciferase activity. Pretreatment of lymphocytes with pharmacological inhibitors showed the involvement of antioxidant, NF-ƙB, p38MAPK, PKC and ERK signaling pathways. Quantification of the Th1, Th2 and Th17 cell population in PBLCs via FACS analyses revealed an increase in the Th17 subset. These results show that MDA transcriptionally upregulates the expression of IL-17E in lymphocytes and alters lymphocyte differentiation towards the pathogenic Th17 subset.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app