Add like
Add dislike
Add to saved papers

Soluble β-glucan from Grifola frondosa induces tumor regression in synergy with TLR9 agonist via dendritic cell-mediated immunity.

The maturation of dendritic cells into more-immunostimulatory dendritic cells by stimulation with different combinations of immunologic agents is expected to provide efficient, adoptive immunotherapy against cancer. Soluble β-glucan maitake D-fraction, extracted from the maitake mushroom Grifola frondosa, acts as a potent immunotherapeutic agent, eliciting innate and adoptive immune responses, thereby contributing to its antitumor activity. Here, we evaluated the efficacy of maitake D-fraction, in combination with a Toll-like receptor agonist, to treat tumors in a murine model. Our results showed that maitake D-fraction, in combination with the Toll-like receptor 9 agonist, cytosine-phosphate-guanine oligodeoxynucleotide, synergistically increased the expression of dendritic cell maturation markers and interleukin-12 production in dendritic cells, but it did not increase interleukin-10 production, generating strong effector dendritic cells with an augmented capacity for efficiently priming an antigen-specific, T helper 1-type T cell response. Maitake D-fraction enhances cytosine-phosphate-guanine oligodeoxynucleotide-induced dendritic cell maturation and cytokine responses in a dectin-1-dependent pathway. We further showed that a combination therapy using cytosine-phosphate-guanine oligodeoxynucleotide and maitake D-fraction was highly effective, either as adjuvants for dendritic cell vaccination or by direct administration against murine tumor. Therapeutic responses to direct administration were associated with increased CD11c(+) dendritic cells in the tumor site and the induction of interferon-γ-producing CD4(+) and CD8(+) T cells. Our results indicate that maitake D-fraction and cytosine-phosphate-guanine oligodeoxynucleotide synergistically activated dendritic cells, resulting in tumor regression via an antitumor T helper cell 1-type response. Our findings provide the basis for a potent antitumor therapy using a novel combination of immunologic agents for future clinical immunotherapy studies in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app