Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Small-conductance Ca2+-activated K+ current is upregulated via the phosphorylation of CaMKII in cardiac hypertrophy from spontaneously hypertensive rats.

Left ventricular hypertrophy is associated with an increased risk of ventricular arrhythmias. However, the underlying molecular basis is poorly understood. It has been reported that small-conductance Ca(2+)-activated K(+) (SK) channels are involved in the pathogenesis of ventricular arrhythmias in heart failure. The present study aimed to test the hypothesis that SK channel activity is increased via the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent pathway in hypertensive cardiac hypertrophy. Normotensive Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHRs) were used. Whole cell membrane currents were recorded in isolated ventricular myocytes by the patch-clamp method, and apamin-sensitive K(+) current (IKAS), which is inhibited by apamin (100 nM), an SK channel blocker, was evaluated. IKAS at 40 mV was present in SHRs, whereas it was hardly detectable in WKY rats (0.579 ± 0.046 vs. 0.022 ± 0.062 pA/pF, both n = 6, P < 0.05). IKAS was almost completely abolished by 1 μM KN-93, a CaMKII inhibitor, in SHRs. Optical recordings of left ventricular anterior wall action potentials revealed that apamin prolonged the late phase of repolarization only in SHRs. Western blot analysis of SK channel protein isoforms demonstrated that SK2 was significantly increased in SHRs compared with WKY rats (SK2/GAPDH: 0.66 ± 0.07 vs. 0.40 ± 0.02, both n = 6, P < 0.05), whereas SK1 and SK3 did not differ between groups. In addition, autophosphorylated CaMKII was significantly increased in SHRs (phosphorylated CaMKII/GAPDH: 0.80 ± 0.06 vs. 0.58 ± 0.06, both n = 6, P < 0.05) despite a comparable total amount of CaMKII between groups. In conclusion, SK channels are upregulated via the enhanced activation of CaMKII in cardiac hypertrophy in SHRs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app