Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of new biomarkers for Acute Respiratory Distress Syndrome by expression-based genome-wide association study.

BMC Pulmonary Medicine 2015 August 20
BACKGROUND: Accumulated to-date gene microarray data on Acute Respiratory Distress Syndrome (ARDS) in the Gene Expression Omnibus (GEO) represent a rich source for identifying new unsuspected targets and mechanisms of ARDS. The recently developed expression-based genome-wide association study (eGWAS) for analysis of GEO data was successfully used for analysis of gene expression of comparatively noncomplex adipose tissue, 75 % of which is represented by adipocytes. Although lung tissue is more heterogenic and does not possess a prevalent cell type for driving gene expression patterns, we hypothesized that eGWAS of ARDS samples will generate biologically meaningful results.

METHODS: The eGWAS was conducted according to (Proc Natl Acad Sci U S A 109:7049-7054, 2012) and genes were ranked according to p values of chi-square test.

RESULTS: The search of GEO retrieved 487 ARDS related entries. These entries were filtered for multiple qualitative and quantitative conditions and 219 samples were selected: mouse n sham/ARDS = 67/92, rat n = 13/13, human cells n = 11/11, canine n = 6/6 with the following ARDS model distributions: mechanical ventilation (MV)/cyclic stretch n = 11; endotoxin (LPS) treatment n = 8; MV + LPS n = 3; distant organ injury induced ARDS n = 3; chemically induced ARDS n = 2; Staphylococcus aureus induced ARDS n = 2; and one experiment each for radiation and shock induced ARDS. The eGWAS of this dataset identified 42 significant (Bonferroni threshold P < 1.55 × 10(-6)) genes. 66.6 % of these genes, were associated previously with lung injury and include the well known ARDS genes such as IL1R2 (P = 4.42 × 10(-19)), IL1β (P = 3.38 × 10(-17)), PAI1 (P = 9.59 × 10(-14)), IL6 (P = 3.57 × 10(-12)), SOCS3 (P = 1.05 × 10(-10)), and THBS1 (P = 2.01 × 10(-9)). The remaining genes were new ARDS candidates. Expression of the most prominently upregulated genes, CLEC4E (P = 4.46 × 10(-14)) and CD300LF (P = 2.31 × 10(-16)), was confirmed by real time PCR. The former was also validated by in silico pathway analysis and the latter by Western blot analysis.

CONCLUSIONS: Our first in the field application of eGWAS in ARDS and utilization of more than 120 publicly available microarray samples of ARDS not only justified applicability of eGWAS to complex lung tissue, but also discovered 14 new candidate genes which associated with ARDS. Detailed studies of these new candidates might lead to identification of unsuspected evolutionarily conserved mechanisms triggered by ARDS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app