Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antisense-mediated reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9): a first-in-human randomized, placebo-controlled trial.

AIMS: LDL-receptor expression is inhibited by the protease proprotein convertase subtilisin/kexin type 9 (PCSK9), which is considered a pharmacological target to reduce LDL-C concentrations in hypercholesterolaemic patients. We performed a first-in-human trial with SPC5001, a locked nucleic acid antisense inhibitor of PCSK9.

METHODS: In this randomized, placebo-controlled trial, 24 healthy volunteers received three weekly subcutaneous administrations of SPC5001 (0.5, 1.5 or 5 mg kg(-1)) or placebo (SPC5001 : placebo ratio 6 : 2). End points were safety/tolerability, pharmacokinetics and efficacy of SPC5001.

RESULTS: SPC5001 plasma exposure (AUC(0,24 h)) increased more than dose-proportionally. At 5 mg kg(-1), SPC5001 decreased target protein PCSK9 (day 15 to day 35: -49% vs. placebo, P < 0.0001), resulting in a reduction in LDL-C concentrations (maximal estimated difference at day 28 compared with placebo -0.72 mmol l(-1), 95% confidence interval - 1.24, -0.16 mmol l(-1); P < 0.01). SPC5001 treatment (5 mg kg(-1)) also decreased ApoB (P = 0.04) and increased ApoA1 (P = 0.05). SPC5001 administration dose-dependently induced mild to moderate injection site reactions in 44% of the subjects, and transient increases in serum creatinine of ≥20 μmol l(-1) (15%) over baseline with signs of renal tubular toxicity in four out of six subjects at the highest dose level. One subject developed biopsy-proven acute tubular necrosis.

CONCLUSIONS: SPC5001 treatment dose-dependently inhibited PCSK9 and decreased LDL-C concentrations, demonstrating human proof-of-pharmacology. However, SPC5001 caused mild to moderate injection site reactions and renal tubular toxicity, and clinical development of SPC5001 was terminated. Our findings underline the need for better understanding of the molecular mechanisms behind the side effects of compounds such as SPC5001, and for sensitive and relevant renal toxicity monitoring in future oligonucleotide studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app