Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

NFI-A disrupts myeloid cell differentiation and maturation in septic mice.

Mounting evidence supports that sepsis-associated immunosuppression increases mortality. As potential contributors to poor sepsis outcomes, myeloid-derived suppressor cells, which are Gr1(+) CD11b(+) innate-immune cell progenitors unable to differentiate and possess suppressive activities, expand dramatically in septic mice by a process requiring increased microRNA-21 and microRNA-181b expression. The inhibition of these microRNAs in vivo in septic mice restores Gr1(+) CD11b(+) cell differentiation and maturation and improves survival. Here, we show that during sepsis-induced generation of myeloid-derived suppressor cells, transcription factor nuclear factor 1 A type represses cyclin-dependent kinase inhibitor p21 to arrest differentiation of Gr1(+) CD11b(+) cells. Our findings include the following: 1) Gr1(+) CD11b(+) myeloid cells from late septic mice genetically lacking nuclear factor 1 A type cannot suppress CD4(+) T cell proliferation and activation; 2) the reconstitution of nuclear factor 1 A type in microRNA-21 and microRNA-181b-depleted Gr1(+) CD11b(+) myeloid-derived suppressor cells inhibits cyclin-dependent kinase inhibitor p21 and restores the immune-suppressor phenotype; 3) ex vivo nuclear factor 1 A type knockdown in Gr1(+) CD11b(+) myeloid-derived suppressor cells from late septic mice restores cyclin-dependent kinase inhibitor p21 expression and promotes monocyte and dendritic cell differentiation; and 4) ectopic nuclear factor 1 A type expression in normal Gr1(+) CD11b(+) cells generates an immunosuppressive phenotype. We suggest that therapeutically targeting nuclear factor 1 A type during late sepsis might improve survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app