Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress.

Physiology & Behavior 2015 November 2
Catalpol, a major compound in Rehmannia glutinosa with both medicinal and nutritional values, has been previously confirmed to shorten the duration of immobility in mice exposed to tail suspension and forced swimming tests. This study attempted to examine the anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress (CUMS) by involving brain-derived neurotrophic factor (BDNF) and cyclooxygenase-2 (COX-2). CUMS-exposed rats were given catalpol daily (5, 10, and 20mg/kg, ig) or a reference drug, fluoxetine hydrochloride (FH, 10mg/kg, ig), at 5 weeks after starting the CUMS procedure. Sucrose preference test was performed to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analysis. CUMS induced depression-like behavior, whereas catalpol and FH administration attenuated this symptom. Moreover, CUMS caused excessively elevated levels of serum corticosterone, an index of hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, in a manner attenuated by catalpol and FH administration. Catalpol administration also further decreased BDNF activities, downregulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB), and reversed the excessive elevation in the activities and mRNA expression levels of COX-2 and prostaglandin E2 (PGE2) in the hippocampus and frontal cortex of rats undergoing CUMS. Results indicate that catalpol can ameliorate CUMS-induced depression-like behavior, and suggest its mechanisms may partially be ascribed to restoring HPA axis dysfunctions, upregulating BDNF expression and its cognate receptor TrkB, and downregulating COX-2 expression, thereby reducing PGE2 levels in the brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app