Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Developmental profiles and expression of the DNA methyltransferase genes in the fathead minnow (Pimephales promelas) following exposure to di-2-ethylhexyl phthalate.

DNA methylation is an epigenetic regulator of gene expression, and this process has been shown to be disrupted by environmental contaminants. Di-2-(ethylhexyl) phthalate (DEHP) and related phthalate esters have been shown to affect development in early life stages of fish and can alter genomic methylation patterns in vertebrates. The objectives of this study were the following: (1) Describe the expression patterns of the DNA methyltransferase (dnmt) genes during early fathead minnow (FHM) development. These genes are critical for methylation and imprinting during development. (2) Determine the effects of DEHP on the development of FHM larvae [1 and 14 days post-hatch (dph)]. (3) Determine the effect of DEHP on dnmt expression and global methylation status in larval FHM. FHMs were first collected over a developmental time course [1, 3, 5, 6, and 14 days post-fertilization (dpf)] to investigate the expression patterns of five dnmt isoforms. The expression of dnmt1 and dnmt7 was relatively high in embryos at 1 dpf but was variable in expression, and these transcripts were later expressed at a lower level (>3 dpf); dnmt3 was significantly higher in embryos at 1 dpf compared to those at 3 dpf. Dnmt6 showed more of a constitutive pattern of expression during the first 2 weeks of development, and the mRNA levels of dnmt8 were higher in embryos at 5 and 6 dpf compared to those at 1 and 3 dpf, corresponding to the hatching period of the embryos. A waterborne exposure to three concentrations of DEHP (1, 10 and 100 µg/L) was conducted on 1-day FHM embryos for 24 h and on larval fish for 2 weeks, ending at 14 dpf. DEHP did not negatively affect survival, hatch rate, or the expression of dnmt isoforms in FHMs. There were no differences in global cytosine methylation following DEHP treatments in 14 dpf larvae, suggesting that environmentally relevant levels of DEHP may not affect global methylation at this stage of FHM development. However, additional targeted methylome studies are required to determine whether specific gene promoters are differently methylated following exposure to DEHP. This study offers new insight into the roles of the dnmt enzymes during FHM development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app