Add like
Add dislike
Add to saved papers

DATA MINING APPROACH FOR IN-HOSPITAL TREATMENT OUTCOME IN PATIENTS WITH ACUTE CORONARY SYNDROME.

INTRODUCTION: Risk stratification is nowadays crucial when estimating the patient's prognosis in terms of treatment outcome and it also helps in clinical decision making. Several risk assessment models have been developed to predict short-term outcomes in patients with acute coronary syndrome. This study was aimed at developing an outcome prediction model for patients with acute coronary syndrome submitted to percutaneus coronary intervention using data mining approach.

MATERIAL AND METHODS: A total of 2030 patients hospitalized for acute coronary syndrome and treated with percutaneous coronary intervention from December 2008 to December 2011 were assigned to a derivation cohort. Demographic and anamnestic data, clinical characteristics on admission, biochemical analysis of blood parameters on admission, and left ventricular ejection fraction formed the basis ofthe study. A number of machine learning algorithms available within Waikato Environment for Knowledge Discovery had been evaluated and the most successful was chosen. The predictive model was subsequently validated in a different population of 931 patients (validation cohort), hospitalized during 2012.

RESULTS: The best prediction results were achieved using Alternating Decision Tree classifier, which was able to predict in-hospital mortality with 89% accuracy, and preserved good performance on validation cohort with 87% accuracy. Alternating Decision Tree classifier identified a subset of 6 attributes most relevant to mortality prediction: systolic and diastolic blood pressure, heart rate, left ventricular ejection fraction, age, and troponin value.

CONCLUSION: Data mining approach enabled the authors to develop a model capable of predicting the in-hospital outcome following percutaneous coronary intervention. The model showed excellent sensitivity and specificity during internal validation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app