Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Akt promotes tumorigenesis in part through modulating genomic instability via phosphorylating XLF.

Nucleus 2015
To maintain genome stability, mammalian cells have developed a delicate, yet efficient, system to sense and repair damaged DNA, including two evolutionarily conserved DNA damage repair (DDR) pathways: homologous recombination (HR) and non-homologous-end-joining (NHEJ). Deregulation in these repair pathways may lead to genomic instability and subsequent human diseases, including cancer. On the other hand, hyper-activation of the oncogenic Akt signaling pathway has been observed in almost all solid tumors. Emerging evidence has begun to reveal a possible role of active Akt in regulating DDR, possibly through suppression of HR. However, whether and how Akt regulates NHEJ remains largely undefined. To this end, we recently reported that Akt impairs NHEJ by phosphorylating XLF at T181, to trigger its dissociation from the functional DNA ligase IV (LIG4)/XRCC4 complex. Here, we provide an additional perspective discussing how Akt is activated upon DNA damage to regulate DNA repair pathways as well as the cellular apoptotic responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app