Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neuronal Regulation of Neuroprotective Microglial Apolipoprotein E Secretion in Rat In Vitro Models of Brain Pathophysiology.

Apolipoprotein E (ApoE) is mainly secreted by glial cells and is involved in many brain functions, including neuronal plasticity, β-amyloid clearance, and neuroprotection. Microglia--the main immune cells of the brain--are one source of ApoE, but little is known about the physiologic regulation of microglial ApoE secretion by neurons and whether this release changes under inflammatory or neurodegenerative conditions. Using rat primary neural cell cultures, we show that microglia release ApoE through a Golgi-mediated secretion pathway and that ApoE progressively accumulates in neuroprotective microglia-conditioned medium. This constitutive ApoE release is negatively affected by microglial activation both with lipopolysaccharide and with ATP. Microglial ApoE release is stimulated by neuron-conditioned media and under coculture conditions. Neuron-stimulated microglial ApoE release is mediated by serine and glutamate through N-methyl-D-aspartate receptors and is differently regulated by activation states (i.e. lipopolysaccharide vs ATP) and by 6-hydroxydopamine. Microglial ApoE silencing abrogated protection of cerebellar granule neurons against 6-hydroxydopamine toxicity in cocultures, indicating that microglial ApoE release is neuroprotective. Our findings shed light on the reciprocal cross-talk between neurons and microglia that is crucial for normal brain functions. They also open the way for the identification of possible pharmacologic targets that can modulate neuroprotective microglial ApoE release under pathologic conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app