Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Relationships between number, surface area, and mass concentrations of different nanoparticles in workplaces.

No consistent metric for measuring exposure to nanoparticles has yet been agreed upon internationally. This study seeks to examine the relationship between the number concentration (NC), surface area concentration (SAC), and mass concentration (MC) of nanoparticles in workplaces. Real-time NC20-1000 nm, SAC10-1000 nm, and respirable MC100-1000 nm were determined for different nanoparticles. Concentration ratio (CR, activity: background), exposure ranking (ER), and between-metric correlation coefficients (R) were used to analyze the relationships between the three metrics. The ratio of cumulative percentage by number (APN) and cumulative percentage by mass (APM) was used to analyze whether the nanoparticle number is predominant, as compared with the nanoparticle mass. The CRs of NC20-1000 nm and SAC10-1000 nm for different nanoparticles at the corresponding work sites were higher than those of respirable MC100-1000 nm. The ERs of NC20-1000 nm for nano-Fe2O3 and nano-Al2O3 were the same as those of SAC10-1000 nm, but were inconsistent with those of respirable MC100-1000 nm. The order of correlation coefficients between NC20-1000 nm, SAC10-1000 nm, and respirable MC100-1000 nm was: RSAC and NC > RSAC and MC > RNC and MC. The ratios of APN and APM for nano-Al2O3 and grinding-wheel particles (less than 100 nm) at the same work site were 2.03 and 1.65, respectively. NC and SAC metrics are significantly distinct from the MC in characterizing exposure to airborne nanoparticles. Simultaneous measurements of the NC, SAC, and MC should be conducted as part of nanoparticle exposure assessment strategies and epidemiological studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app