Read by QxMD icon Read

Environmental Science. Processes & Impacts

Alan D Tappin, Alba Navarro-Rodriguez, Sean D W Comber, Paul J Worsfold
UK implementation of the European Union Water Framework Directive (for the 2015-2021 cycle) Ecological Status (ES) classification for river phosphorus is based on the calculation of reference conditions for reactive phosphorus (RP) using river alkalinity measurements. Underpinning this approach is that the alkalinity is primarily from rock weathering and is free of anthropogenic influences. However, the potential contribution of anthropogenic alkalinity needs to be considered and, if possible, quantified. In the rural South West River Basin District of England, 38 river sites were examined with respect to river alkalinity loads in order to test this consideration...
September 20, 2018: Environmental Science. Processes & Impacts
Stacey Hales-Messenger, Andrew Swindle
Chromate was used as a chemical probe to investigate the impact of mineral-organic contact time on the surface reactivity of two different sizes of goethite particles. A series of goethite-chromate sorption batch reactions were conducted in the presence and absence of Suwannee River humic acid (HA) and natural organic matter (NOM) using nano- and micro-scale goethite particles. In experiments with added organics the amount of time allowed for goethite-organic matter interaction (i.e. contact time) was varied from less than 1 minute, up to 24 hours prior to the addition of chromate...
September 19, 2018: Environmental Science. Processes & Impacts
Verena Unterwurzacher, Clara Pogner, Harald Berger, Joseph Strauss, Sabine Strauss-Goller, Markus Gorfer
Determination and assessment of airborne fungal particles is complex and results of different sampling and analytical strategies are hard to compare due to limitations of each of the techniques. Here, an indoor mold detection system based on quantitative polymerase chain reaction (qPCR) is described and validated for its reliability and stability to identify airborne fungal particles collected. Data obtained from testing the system with fungal DNA, spore suspensions and bioaerosols indicated a need for spiking and normalization of measurements due to material loss and assay specific bias...
September 18, 2018: Environmental Science. Processes & Impacts
Mylene Ratelle, Xinci Li, Brian D Laird
Traditional food consumption among northern populations is associated with improved nutrition but occasionally can also increase contaminant exposure. High levels of cadmium in the organs of moose from certain regions of the Northwest Territories, Canada, led to the release of consumption notices. These notices recommended that individuals limit their consumption of kidney and liver from moose harvested from the Southern Mackenzie Mountain. A human biomonitoring project was designed to better characterize exposure and risks from contaminants, including cadmium, among Dene/Métis communities of the Northwest Territories Mackenzie Valley, Canada...
September 17, 2018: Environmental Science. Processes & Impacts
Reid P Milstead, Keeton T Nance, Kulananalu S Tarnas, Kira E Egelhofer, David R Griffith
Halogenated estrogens are thought to be moderately potent endocrine-disrupting compounds that are formed during chlorine-based wastewater disinfection processes and may represent a significant fraction of the total amount of estrogen delivered from wastewater treatment plants to receiving waters. Yet we lack key information about the photochemical degradation of halogenated estrogens, a process that has important implications for UV-based wastewater treatment and environmental fate modeling. To better understand halogenated estrogen degradation in aquatic environments, we studied the direct photolysis of 17β-estradiol (E2), 2-bromo-17β-estradiol (monoBrE2), 2,4-dibromo-17β-estradiol (diBrE2), and 2,4-dichloro-17β-estradiol (diClE2) as well as the indirect photolysis of diBrE2 under natural solar irradiance...
September 13, 2018: Environmental Science. Processes & Impacts
Damien J Bolinius, Anna Sobek, Marie F Löf, Emma Undeman
In this study we have evaluated the use of consumption of manufactured products (chemical products and articles) in the EU as proxies for diffuse emissions of chemicals to the environment. The content of chemical products is relatively well known. However, the content of articles (products defined by their shape rather than their composition) is less known and currently has to be estimated from chemicals that are known to occur in a small set of materials, such as plastics, that are part of the articles. Using trade and production data from Eurostat in combination with product composition data from a database on chemical content in materials (the Commodity Guide), we were able to calculate trends in the apparent consumption and in-use stocks for 768 chemicals in the EU for the period 2003-2016...
September 12, 2018: Environmental Science. Processes & Impacts
Daniel A Petrash, Jiří Jan, Dagmara Sirová, Nana O-A Osafo, Jakub Borovec
Lake Medard is an oligotrophic post-mining lake characterised by ferruginous bottom waters, with marked redox gradients resulting from iron (Fe) and nitrogen (N) speciation and accompanying depth-dependent variations in the abundance of volatile fatty acids (VFAs), pH and alkalinity. The lacustrine system is meromictic, featuring a dysoxic hypolimnion and an anoxic monimolimnion with relatively high concentrations of sulfate (SO42-, 19 ± 2 mM) and Fe(ii) (127 ± 17 μM). An increase in dissolved manganese is also observed with increasing depth, together with a general lack of sulfide, which can only be detected at the sediment-water interface at concentrations of ∼0...
September 10, 2018: Environmental Science. Processes & Impacts
Johnathan D Culpepper, Michelle M Scherer, Thomas C Robinson, Anke Neumann, David Cwiertny, Drew E Latta
Here we revisit whether the common mixed-valent Fe mineral, magnetite, is a viable reductant for the abiotic natural attenuation of perchloroethylene (PCE) and trichloroethylene (TCE) in anoxic groundwater plumes. We measured PCE and TCE reduction by stoichiometric magnetite as a function of pH and Fe(ii) concentration. In the absence of added Fe(ii), stoichiometric magnetite does not reduce PCE and TCE over a three month period under anoxic conditions. When Fe(ii) is added to magnetite suspensions, PCE and TCE are reduced under Fe(ii) and pH conditions that appear to be controlled by the solubility of ferrous hydroxide, Fe(OH)2(s)...
September 7, 2018: Environmental Science. Processes & Impacts
Yali Gao, Xue Zhao, Zhonglei Ju, Yue Yu, Zhixin Qi, Deqi Xiong
The unsourced oil contamination on the coast of Bohai Sea has recently attracted scholars to study the formation of sunken and suspended oils (SSO) from oil slicks on the sea surface. In this research, batch experiments have been conducted to study the time-scale effect of the different concentrations of suspended sediments on the formation of sunken oils and suspended oils using three oils (Oman crude oil, Merey crude oil, and 380# fuel oil) and two sediments (sand and silt) at different temperatures. The results showed that the sunken and suspended oils formed quickly within the mixing time and reached a maximum at the equilibrium time, te, and that te had a wide range of variation with sediment concentration and type...
September 5, 2018: Environmental Science. Processes & Impacts
Peter N Tirella, Rebecca L Craig, Darrell B Tubbs, Nicole E Olson, Ziying Lei, Andrew P Ault
Due to their small size, measurements of the complex composition of atmospheric aerosol particles and their surfaces are analytically challenging. This is particularly true for microspectroscopic methods, where it can be difficult to optically identify individual particles smaller than the diffraction limit of visible light (∼350 nm) and measure their vibrational modes. Recently, surface enhanced Raman spectroscopy (SERS) has been applied to the study of aerosol particles, allowing for detection and characterization of previously undistinguishable vibrational modes...
August 20, 2018: Environmental Science. Processes & Impacts
Edward P Kolodziej
No abstract text is available yet for this article.
September 19, 2018: Environmental Science. Processes & Impacts
Weiwei Cong, Jun Meng, Samantha C Ying
In an effort to optimize soil management practices that can help mitigate terrestrial carbon emissions, biochar has been applied to a wide range of soil environments to examine its effect on soil greenhouse gas emissions. Such studies have shown that the soil methane (CH4) flux response can vary widely leading to both increase and decrease in CH4 flux upon biochar amendment. To address this discrepancy, multiple meta-analysis studies have been performed in recent years to determine the key factors that may control the direction of CH4 flux upon biochar treatment...
September 19, 2018: Environmental Science. Processes & Impacts
Timothy M Remaili, Naiyi Yin, William W Bennett, Stuart L Simpson, Dianne F Jolley, David T Welsh
In undisturbed, metal-contaminated marine sediments, porewater metal concentrations are generally low due to their associations with strong binding phases such as organic matter, Fe/Mn (oxy)hydroxides and sulfides. Bioturbating fauna can alter redox conditions and, therefore, metal binding, potentially leading to increased metal bioavailability and subsequent toxicity to inhabiting organisms. Here we assessed the impacts of bioturbation (by bivalves and large amphipod species) on sediment biogeochemistry, metal bioaccumulation and toxicity to a smaller amphipod species in a metal contaminated sediment with low and high acid volatile sulfide (AVS) concentrations...
September 19, 2018: Environmental Science. Processes & Impacts
Jinlan Xu, Qianqian Cao, Miaojia Zhang, Chengwei Yang
To explore the oxidation effects and mechanisms for the oxidation of alkanes by H2O2 in a Fenton system catalyzed by two types of iron bound to soil organic matter (Fe-SOM) in crude oil-contaminated soil, an oxidation experiment was performed in active Fe-SOM and Fe-SOM systems. The results showed that the TPH removal ability of active Fe-SOM (average 0.36 g TPH/g Fe-SOM) was 2.25-fold higher than the corresponding value of Fe-SOM. Active Fe-SOM contained both -NH2 and -OH functional groups, and had a higher content of iron with high binding energy, while Fe-SOM only contained -NH2 groups...
September 19, 2018: Environmental Science. Processes & Impacts
Yaling Zeng, Zhenxing Shen, Yali Lei, Tian Zhang, Qian Zhang, Hongmei Xu, Qiyuan Wang, Junji Cao, Yang Liu
Levels of particle-bound polycyclic aromatic hydrocarbons (PAHs) are affected by emission as well as multiple factors. In this study, we investigated the sources, uptake, affinity, and removal mechanism of PAHs in fine particles (PM2.5). The source strength was analyzed with source apportionment, which was conducted by principal component analysis (PCA), positive matrix factorization (PMF) and diagnostic ratio analysis. The octanol-air and soot-air partitioning model was used to elucidate the partitioning behavior of PM2...
September 19, 2018: Environmental Science. Processes & Impacts
Qianqian Dong, Feng Wang, Yihua Xiao, Penghui Li, Qinghui Huang
Eutrophication enhances the production of autochthonous dissolved organic matter (DOM), which is a major driving factor behind the impairment of many aquatic ecosystems. In a mesocosm study, we investigated the effects of the abundance and composition of DOM on the potential bioavailability of cadmium (Cd) caused by eutrophication, using three-dimensional excitation-emission matrix fluorescence spectroscopy integrated with tangential flow ultrafiltration technology. The complexing capacity of DOM-Cd and the sorption distribution coefficient between DOM and the bulk solution was calculated based on a 1 : 1 complexation model...
September 19, 2018: Environmental Science. Processes & Impacts
Jinzhi Ni, Joseph J Pignatello
Weak bonds between molecular segments and between separate molecules of natural organic matter (OM) govern OM solubility, adsorption, supramolecular association in solution, and complexation with metal ions and oxides. We tested the hypothesis that especially strong hydrogen bonds, known as (negative) charge-assisted hydrogen bonds, (-)CAHB, contribute significantly to OM cohesion and play a role in the water solubility of solid-phase OM. The (-)CAHB, exemplified by structures such as (-CO2HO2C-)- and (-CO2HO-)-, may form between weak acids with similar proton affinity, and is shorter, more covalent, and much stronger than ordinary hydrogen bonds...
September 19, 2018: Environmental Science. Processes & Impacts
A Paula Marinho Reis, M Cave, A J Sousa, J Wragg, M J Rangel, A R Oliveira, C Patinha, F Rocha, T Orsiere, Y Noack
This paper describes a methodology developed to assess and apportion probable indoor and outdoor sources of potentially toxic elements while identifying chemical signatures in the household dust collected from private homes in an industrial city (Estarreja, central Portugal). Oral bioaccessibility estimates and the chemical composition of toenail clippings were used to assess indoor dust ingestion as a potential exposure pathway and further investigate exposure-biomarker relationships. Indoor and paired outdoor dust samples were collected from each household...
September 19, 2018: Environmental Science. Processes & Impacts
Timothy M Remaili, Stuart L Simpson, William W Bennett, Joshua J King, Luke M Mosley, David T Welsh, Dianne F Jolley
Hypersaline sediments derived from poor land management or the decommissioning of large-scale salt production contribute to the long-term degradation of aquatic environments. Obstacles impeding remediation of these environments include salt crusts restricting benthic recolonisation, hypersalinity-induced toxicity to organisms, and disruption of biogeochemical cycles. Remediation often focuses on engineered solutions, despite sediment-biota interactions often playing a crucial role in improving long-term remediation and restoration of contaminated areas...
September 19, 2018: Environmental Science. Processes & Impacts
Qianqian Cao, Lin Liu, Hongbin Yang, Yingchun Cai, Weihua Li, Guixia Liu, Philip W Lee, Yun Tang
With industrial development and eventual commercial use, environmental chemicals through accidental spills and effluents appear more frequently in aquatic ecosystems and may produce an enormous effect on water, soil, wildlife and human health. Therefore, aquatic toxicity becomes an increasingly important endpoint in the evaluation of the environmental impact of chemicals. In this study, based on ECOTOX database, a large data set containing 824 diverse compounds with experimental 48 h EC50 values on crustaceans was compiled...
September 19, 2018: Environmental Science. Processes & Impacts
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"