Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression, purification and crystallization of the (3R)-hydroxyacyl-ACP dehydratase HadAB complex from Mycobacterium tuberculosis.

The (3R)-hydroxyacyl-ACP dehydratase HadAB, involved in the biosynthetic pathway for mycolic acid (MA) of Mycobacterium tuberculosis, catalyzes the third step in the fatty acid (FA) elongation cycle, which is an ideal and actual target for anti-tubercular agent. Though HadAB is predicted to be a member of the hotdog superfamily, it shares no sequence identity with typical hotdog fold isoenzyme FabZ. To characterize the significance of HadAB from the perspective of structural biology, large amount of pure HadAB complex is required for biochemical characterization and crystallization. Here, we used a unique expression and purification method. HadA and HadB were cloned separately and co-expressed in Escherichia coli. After GST affinity chromatography, two steps of anion exchange chromatography and gel filtration, the purity of the protein as estimated by SDS-PAGE was >95%. Using hanging-drop vapor-diffusion method, crystals were obtained and diffracted X-rays to 1.75Å resolution. The crystal belongs to space group P41212, with unit-cell parameters a=b=82.0Å, c=139.8Å, α=β=γ=90.0°.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app