Add like
Add dislike
Add to saved papers

Systemic inflammation activates satellite glial cells in the mouse nodose ganglion and alters their functions.

Glia 2015 November
Satellite glial cell (SGCs) in trigeminal and dorsal root ganglia are altered structurally and functionally under pathological conditions associated with chronic pain. These changes include reactive gliosis, augmented coupling by gap junctions, and increased responses to ATP via purinergic P2 receptors. Similar information for nodose ganglia (NG), which receive sensory inputs from internal organs via the vagus nerves, is missing. Here, we investigated changes in SGCs in mouse NG after the intraperitoneal administration of lipopolysaccharide (LPS), which induces systemic inflammation. Using calcium imaging we found that SGCs in intact, freshly isolated NG are sensitive to ATP, acting largely via purinergic P2 receptors (mixed P2X and P2Y), with threshold at 0.1 μM. A single systemic injection of LPS (2.5 mg/kg) induced a 6-fold increase in the responses to ATP, largely by augmenting the sensitivity of P2X receptors. Immunohistochemical analysis revealed that at 1-14 days post-LPS injection the expression of glial fibrillary acidic protein in SGCs was 2-3-fold greater than controls. The expression of pannexin 1 channels increased 2-fold at day 7 after LPS injection. Using intracellular labeling we examined dye coupling among SGCs around different neurons, and observed an over 2-fold higher incidence of dye coupling after the induction of inflammation. Incubating the ganglia with ATP increased dye coupling by acting on neuronal P2X receptors, suggesting a role for ATP in the LPS-induced changes. We conclude that inflammation induces prominent changes in SGCs of NG, which might have a role in vagal afferent functions, such as the inflammatory reflex. GLIA 2015;63:2121-2132.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app