Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Delivery of siRNA to ovarian cancer cells using laser-activated carbon nanoparticles.

AIM: The RNAi-mediated knockdown of gene expression is an attractive tool for research and therapeutic purposes but its implementation is challenging. Here we report on a new method based on photoacoustic delivery of siRNA developed to address some of these challenges.

MATERIALS & METHODS: Physical properties and photoacoustic emission of carbon black (CB) particles upon near-infrared laser irradiation were characterized. Next, ovarian cancer cells Hey A8-F8 were exposed to near-infrared nanosecond laser pulses in the presence of siRNA targeting EGFR gene and CB particles. The intracellular delivery of siRNA and silencing of the target gene were determined by specific qPCR assays.

RESULTS & CONCLUSION: Laser-activated CB nanoparticles generated photoacoustic emission and enabled intracellular delivery of siRNA and significant knockdown of its target EGFR mRNA. This physical method represents a new promising approach to targeted therapeutic delivery of siRNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app