Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Induction of Tolerogenic Dendritic Cells by a PEGylated TLR7 Ligand for Treatment of Type 1 Diabetes.

Autoimmune diabetes mellitus (DM) results from the destruction of pancreatic islet cells by activated T lymphocytes, which have been primed by activated dendritic cells (DC). Individualized therapy with ex vivo DC manipulation and reinfusion has been proposed as a treatment for DM, but this treatment is limited by cost, and requires specialized facilities. A means of in situ modulation of the DC phenotype in the host would be more accessible. Here we report a novel innate immune modulator, 1Z1, generated by conjugating a TLR7 ligand to six units of polyethylene glycol (PEG), which skews DC phenotype in vivo. 1Z1 was less potent in inducing cytokine production by DC than the parent ligand in vitro and in vivo. In addition, this drug only modestly increased DC surface expression of activation markers such as MHC class II, CD80, and CD86; however, the expression of negative regulatory molecules, such as programmed death ligand 1 (PD-L1), and interleukin-1 receptor-associated kinase M (IRAK-M) were markedly increased. In vivo transfer of 1Z1 treated DC into prediabetic NOD mice delayed pancreatic insulitis. Daily administration of 1Z1 effectively prevented the clinical onset of hyperglycemia and reduced histologic islet inflammation. Daily treatment with 1Z1 increased PD-L1 expression in the CD11c(+) population in peri-pancreatic lymph nodes; however, it did not induce an increase in regulatory T cells. Pharmaceutical modulation of DC maturation and function in situ, thus represents an opportunity to treat autoimmune disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app