Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The effects of a stannous chloride-based water treatment system in a mercury contaminated stream.

Chemosphere 2015 November
We assessed the impacts of an innovative Hg water treatment system on a small, industrially-contaminated stream in the southeastern United States. The treatment system, installed in 2007, removes Hg from wastewater using tin (Sn) (II) chloride followed by air stripping. Mercury concentrations in the receiving stream, Tims Branch, decreased from >100 to ∼10 ng/L in the four years following treatment, and Hg body burdens in redfin pickerel (Esox americanus) decreased by 70% at the most contaminated site. Tin concentrations in water and fish increased significantly in the tributary leading to Tims Branch, but concentrations remain below levels of concern for human health or ecological risks. While other studies have shown that Sn may be environmentally methylated and methyltin can transfer its methyl group to Hg, results from our field studies and sediment incubation experiments suggest that the added Sn to the Tims Branch watershed is not contributing to methylmercury (MeHg) production or bioaccumulation in this system. The stannous chloride treatment system installed at Tims Branch was effective at removing Hg inputs and reducing Hg bioaccumulation in the stream, but future studies are needed to assess longer term impacts of Sn on the environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app