Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Accelerating magnetic resonance fingerprinting (MRF) using t-blipped simultaneous multislice (SMS) acquisition.

PURPOSE: We incorporate simultaneous multislice (SMS) acquisition into MR fingerprinting (MRF) to accelerate the MRF acquisition.

METHODS: The t-Blipped SMS-MRF method is achieved by adding a Gz blip before each data acquisition window and balancing it with a Gz blip of opposing polarity at the end of each TR. Thus the signal from different simultaneously excited slices are encoded with different phases without disturbing the signal evolution. Furthermore, by varying the Gz blip area and/or polarity as a function of repetition time, the slices' differential phase can also be made to vary as a function of time. For reconstruction of t-Blipped SMS-MRF data, we demonstrate a combined slice-direction SENSE and modified dictionary matching method.

RESULTS: In Monte Carlo simulation, the parameter mapping from multiband factor (MB) = 2 t-Blipped SMS-MRF shows good accuracy and precision when compared with results from reference conventional MRF data with concordance correlation coefficients (CCC) of 0.96 for T1 estimates and 0.90 for T2 estimates. For in vivo experiments, T1 and T2 maps from MB=2 t-Blipped SMS-MRF have a high agreement with ones from conventional MRF.

CONCLUSION: The MB=2 t-Blipped SMS-MRF acquisition/reconstruction method has been demonstrated and validated to provide more rapid parameter mapping in the MRF framework.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app