Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Prenatal ethanol exposure and placental hCG and IGF2 expression.

Placenta 2015 August
INTRODUCTION: Fetal alcohol spectrum disorder (FASD) is the main cause of preventable non-genetic mental retardation. Diagnosis of prenatal exposure to ethanol (PEE) is based on questionnaires and biomarkers in perinatal matrices. Early diagnosis of FASD is important to mitigate secondary disabilities that will arise later in life. It is important to identify biomarkers related to cellular damage caused by PEE. The main objective was to identify novel candidate biomarkers from placental tissue using an in vitro model of exposure to ethanol and to support it in placental tissue obtained from pregnancies with PEE assessed by fatty acid esters in meconium samples.

METHODS: First, hormone production was examined using two different human trophoblast cell lines, JEG3 and BeWo. Viable cell count by exclusion method was analyzed and human chorionic gonadotrophin (hCG) and insulin-like growth factor 2 (IGF2) were quantified by Western blot and ELISA. Second, these techniques were used in protein lysates from human placentas from pregnancies with and without exposure to ethanol.

RESULTS: Both trophoblast cell lines showed a decrease in cell viability accompanied with apoptosis activation after a chronic ethanol treatment. Moreover, we showed an increase in the secretion of hCG and IGF2 in a dose-dependent manner. Interestingly, this increase was also observed in a set of human placenta tissue from fetuses exposed prenatally to ethanol.

DISCUSSION: Ethanol exposure during pregnancy causes placenta cell damage, so altering its normal function. The specific hCG and IGF2 release pattern is a candidate surrogated biomarker of the damage due to PEE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app