Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lower-body negative pressure restores leg bone microvascular flow to supine levels during head-down tilt.

Skeletal unloading and cephalic fluid shifts in microgravity may alter the bone microvascular flow and may be associated with the 1-2% bone loss per month during spaceflight. The purpose of this study was to determine if lower-body negative pressure (LBNP) can prevent microgravity-induced alterations of tibial microvascular flow. Head-down tilt (HDT) simulates the cephalad fluid shift and microvascular flow responses that may occur in microgravity. We hypothesized that LBNP prevents HDT-induced increases in tibial microvascular flow. Tibial bone microvascular flow, oxygenation, and calf circumference were measured during 5 min sitting, 5 min supine, 5 min 15° HDT, and 10 min 15° HDT with 25 mmHg LBNP using photoplethysmography (PPG), near-infrared spectroscopy (NIRS), and strain-gauge plethysmography (SGP). Measurements were made simultaneously. Tibial microvascular flow increased by 36% with 5 min 15° HDT [2.2 ± 1.1 V; repeated-measures ANOVA (RMANOVA) P < 0.0001] from supine (1.4 ± 0.8 V). After 10 min of LBNP in the 15° HDT position, tibial microvascular flow returned to supine levels (1.1 ± 0.5 V; RMANOVA P < 0.001). Tibial oxygenation did not change significantly during sitting, supine, HDT, or HDT with LBNP. However, calf circumference decreased with 5 min 15° HDT (-0.7 ± 0.4 V; RMANOVA P < 0.0001) from supine (-0.5 ± 0.4 V). However, with LBNP calf circumference returned to supine levels (-0.4 ± 0.1 V; RMANOVA P = 0.002). These data establish that simulated microgravity increases tibial microvascular flow and LBNP prevents these increases. The results suggest that LBNP may provide a suitable countermeasure to normalize the bone microvascular flow during spaceflight.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app