Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chelidonine suppresses migration and invasion of MDA-MB-231 cells by inhibiting formation of the integrin-linked kinase/PINCH/α-parvin complex.

Metastasis is the primary cause of cancer-associated mortality. The ternary IPP complex of integrin-linked kinase, PINCH and parvin functions as a signaling platform for integrins, which modulate numerous cellular processes including cell migration and invasion. Chelidonine, isolated from Chelidonium majus, is a benzophenanthridine alkaloid that exhibits anticancer properties; however, the anti-migratory and anti-invasive effects of chelidonine remain unknown. The aim of the present study was to investigate the inhibitory effects of chelidonine on migration and invasion of MDA-MB-231 human breast cancer cells, and to determine the underlying mechanisms. Chelidonine was shown to inhibit the migration and invasion of MDA-MB-231 cells in a concentration-dependent manner, without affecting the cell viability. Chelidonine did not significantly inhibit the adhesion of the cells to type 1 collagen (COL-I), however it did affect cell spreading and reorganization of the actin cytoskeleton. Chelidonine also inhibited COL-I-induced protein kinase B (Akt) activation and translocation to the plasma membrane, however, it did not significantly inhibit the activation of focal adhesion kinase. Notably, chelidonine treatment significantly inhibited COL-I-induced formation of the IPP complex and activation of IPP downstream signaling molecules, such as extracellular signal-regulated kinase (ERK)1/2. These results suggest that chelidonine exhibits anti-migratory and anti-invasive effects in MDA-MB-231 cells, by suppressing COL-I-induced integrin signaling, through inhibiting the formation of the IPP complex and subsequent down-regulation of IPP downstream signaling molecules, such as Akt and ERK1/2. These results suggest that chelidonine may be a potential therapeutic agent against metastasis of invasive human cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app