Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential susceptibility of BALB/c, C57BL/6N, and CF1 mice to photoperiod changes.

OBJECTIVE: Circadian disturbances common to modern lifestyles have been associated with mood disorders. Animal models that mimic such rhythm disturbances are useful in translational research to explore factors contributing to depressive disorders. This study aimed to verify the susceptibility of BALB/c, C57BL/6N, and CF1 mice to photoperiod changes.

METHODS: Thermochron iButtons implanted in the mouse abdomen were used to characterize temperature rhythms. Mice were maintained under a 12:12 h light-dark (LD) cycle for 15 days, followed by a 10:10 h LD cycle for 10 days. Cosinor analysis, Rayleigh z test, periodograms, and Fourier analysis were used to analyze rhythm parameters. Paired Student's t test was used to compare temperature amplitude, period, and power of the first harmonic between normal and shortened cycles.

RESULTS: The shortened LD cycle significantly changed temperature acrophases and rhythm amplitude in all mouse strains, but only BALB/c showed altered period.

CONCLUSION: These findings suggest that BALB/c, the preferred strain for stress-induced models of depression, should also be favored for exploring the relationship between circadian rhythms and mood. Temperature rhythm proved to be a useful parameter for characterizing rhythm disruption in mice. Although disruption of temperature rhythm has been successfully documented in untethered mice, an evaluation of desynchronization of other rhythms is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app