Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response.

We have explored the mechanisms underlying ethanol-induced mitochondrial dynamics disruption and mitophagy. Ethanol increases mitochondrial fission in a concentration-dependent manner through Drp1 mitochondrial translocation and OPA1 proteolytic cleavage. ARPE-19 (a human retinal pigment epithelial cell line) cells challenged with ethanol showed mitochondrial potential disruptions mediated by alterations in mitochondrial complex IV protein level and increases in mitochondrial reactive oxygen species production. In addition, ethanol activated the canonical autophagic pathway, as denoted by autophagosome formation and autophagy regulator elements including Beclin1, ATG5-ATG12 and P-S6 kinase. Likewise, autophagy inhibition dramatically increased mitochondrial fission and cell death, whereas autophagy stimulation rendered the opposite results, placing autophagy as a cytoprotective response aimed to remove damaged mitochondria. Interestingly, although ethanol induced mitochondrial Bax translocation, this episode was associated to cell death rather than mitochondrial fission or autophagy responses. Thus, Bax required 600 mM ethanol to migrate to mitochondria, a concentration that resulted in cell death. Furthermore, mouse embryonic fibroblasts lacking this protein respond to ethanol by undergoing mitochondrial fission and autophagy but not cytotoxicity. Finally, by using the specific mitochondrial-targeted scavenger MitoQ, we revealed mitochondria as the main source of reactive oxygen species that trigger autophagy activation. These findings suggest that cells respond to ethanol activating mitochondrial fission machinery by Drp1 and OPA1 rather than bax, in a manner that stimulates cytoprotective autophagy through mitochondrial ROS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app