Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Plasma QconCATs reveal a gender-specific proteomic signature in apheresis platelet plasma supernatants.

Journal of Proteomics 2015 April 30
UNLABELLED: Clinical translation of proteomic technologies is often hampered by technical limitations, including inter-laboratory inconsistencies of label-free derived relative quantification, time-consuming analytical approaches and the subsequent challenge of performing proteomic analyses on large cohorts of subjects. Here we introduce plasma QconCAT-based targeted proteomics, an approach that allows the simultaneous absolute quantitation down to the picogram level of hundreds of proteins in a single liquid chromatography-selected reaction monitoring mass spectrometry run. We demonstrate the robustness of the approach by analyzing apheresis platelet concentrate supernatants at storage day 1 and the end of the shelf life for this blood-derived therapeutic, day 5. The targeted approach was repeatable and robust revealing potential gender-specific signatures across a set of three male and female donors. This technical note represents a proof-of-principle of the application of QconCAT-based MRM strategies to transfusion-medicine relevant issues, such as storage and gender-dependent proteomic signatures in blood-derived therapeutics.

BIOLOGICAL SIGNIFICANCE: Gender differences in the proteome composition of apheresis platelet supernatants have always been postulated, and might underlie a higher risk of adverse reactions when transfusing apheresis products from female donors. Preliminary proteomic studies provided an overview of gender-dependent relative compositional differences in the proteome of apheresis platelet supernatants during routine storage in the blood bank. Here we apply a proteomics approach for absolute quantitation of approximately 100 proteins in apheresis platelet supernatants from male and female donors at storage days 1 and 5. Absolute quantitative proteomic analyses allowed us to confirm and expand on previous observations about gender and storage-dependency of platelet supernatant protein profiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app