Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The neurophysiology of biological motion perception in schizophrenia.

Brain and Behavior 2015 January
INTRODUCTION: The ability to recognize human biological motion is a fundamental aspect of social cognition that is impaired in people with schizophrenia. However, little is known about the neural substrates of impaired biological motion perception in schizophrenia. In the current study, we assessed event-related potentials (ERPs) to human and nonhuman movement in schizophrenia.

METHODS: Twenty-four subjects with schizophrenia and 18 healthy controls completed a biological motion task while their electroencephalography (EEG) was simultaneously recorded. Subjects watched clips of point-light animations containing 100%, 85%, or 70% biological motion, and were asked to decide whether the clip resembled human or nonhuman movement. Three ERPs were examined: P1, N1, and the late positive potential (LPP).

RESULTS: Behaviorally, schizophrenia subjects identified significantly fewer stimuli as human movement compared to healthy controls in the 100% and 85% conditions. At the neural level, P1 was reduced in the schizophrenia group but did not differ among conditions in either group. There were no group differences in N1 but both groups had the largest N1 in the 70% condition. There was a condition × group interaction for the LPP: Healthy controls had a larger LPP to 100% versus 85% and 70% biological motion; there was no difference among conditions in schizophrenia subjects.

CONCLUSIONS: Consistent with previous findings, schizophrenia subjects were impaired in their ability to recognize biological motion. The EEG results showed that biological motion did not influence the earliest stage of visual processing (P1). Although schizophrenia subjects showed the same pattern of N1 results relative to healthy controls, they were impaired at a later stage (LPP), reflecting a dysfunction in the identification of human form in biological versus nonbiological motion stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app